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Abstract first is model-based or geometric-based. Examples of such

features are the width and height of the mouth (and their

We present our findings from audio-visual speech temporal derivatives) that can be estimated from the

recognition experiments for connected digit recognition in images using a tracking procedure. The second category is

noisy environments. We derive hybrid (geometric- and pixel-based or appearance-based; that is, the features are

appearance-based) visual lip features using a real-time lip directly derived from the raw pixel values. The first

tracking algorithm that we proposed previously. Using a category is more intuitive, but there is typically a

small single-speaker corpus modeled after the TIDIGITS substantial loss of information because of the data

database, we build whole-word HMMs using both single- reduction involved. There is little loss of information in

stream and 2-stream modeling strategies. For the 2- the second representation, but the high dimensionality of

stream HMM method, we use stream-dependent weights to the image space is a computational disadvantage, and

adjust the relative contributions of the two feature streams pixel-based features do not directly relate to observable

based on the acoustic SNR level. The 2-stream HMM articulator motion. Furthermore, normalization needed to
consistently gave the lowest WER, with an error reduction account for lighting changes, translation and other effects

of 83% at -3dB SNR level compared to the acoustic-only is more difficult compared to the geometric-based
baseline. Visual-only ASR WER at 6.85% was also counterpart.

achieved A real-time system prototype was developed for We had experimented with a visual feature representation
concept demonstration. that combined the two types of features in our previous

work and demonstrated its effectiveness in simple isolated

1. Introduction. digit recognition experiments [4]. The technique is
adopted in the work reported in this paper. Here we

combining acoustic and visual lip features for speech develop new experiments to evaluate our system using
By resulting bisual speecatresor s stream-weighted 2-stream Hidden Markov Models
recognition, the resulting bimodal speech recognizer is (HMMs) as well as the traditional single stream HMMs in
markedly more robust in the presence of a variety of the context of connected digit recognition.

acoustic noise, when compared to the acoustic-only

counterpart. The idea was pursued in a number of past The rest of the paper is organized as follows. We first
studies [2][5][6][7][8][12][13][14][15][16][17][21]. Two briefly describe our lip localization and tracking
key elements of an audio-visual speech recognition system algorithms that allow geometric-based features to be
are: (1) a front end for visual feature extraction, and (2) an extracted automatically, and pixel-based features to be
information fusion architecture for integrating features subsequently normalized. We then focus on the proposed
from the two modalities. In recent years, considerable hybrid feature and its efficacy in the context of visual-only
progress has been made in the first area [4][13][15][16], as speech recognition. Finally, we describe the recognition
well as in the second area [6][8][14][15][171. experiments we performed, and report our findings from

these experiments involving audio-visual speech
There are primarily two categories of visual feature recognition of connected digits in the presence of aircraft
representation in the context of speech recognition. The ccptnieo ayn N ees

cockpit noise of varying SNR levels.
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2. Visual Tracking and Localization.

To automate machine lipreading, we need to locate and
track movements and appearance changes of the lips.
Several model-based approaches for tracking lip f=0 f=4

movements that have been proposed include snake models
[10], deformable templates [20], active shape models [ 121,
and active contours [11]. We have developed an integrated
approach addressing both lip localization and lip tracking
[2][3]. The first part is based on Gaussian mixture model-
based clustering using hue in the HSV color space. The
largest elliptical connected region detected with the f =8 f= 12
expected range of hue values is identified as the lips. It is
usually quite effective and can be used to initialize the lip Figure 1: Snapshots of output from our lip tracking and
tracking part. Tracking is based on a user-specific 2D B- visual feature extraction system in a few video frames.
spline model that can be constructed offline, or estimated Geometric-based features were extracted from the
from sample images [3]. To optimize tracking stability, the tracking contour. Normalized pixel-based features
model deforms only in an affine subspace, which is were calculated based on the vertical intensity profile
adequate for capturing most lip movements that occur in in the middle mouth region (plotted horizontally in
normal speech utterances. The model is driven (or fitted) light blue against a vertical axis).
based on locations of steepest gradient in the image, in a
linearly transformed color space given by

interpolation, we map the vertical profile to a feature
s = a- r + Pt. g + y'. b, vector of constant length (e.g., 32 in our experiments).

Therefore, information about the height of the mouth is
where { P, )I are speaker-dependent and are estimated largely decoupled from the pixel-based features. This is in

based on linear discriminant analysis on the RGB content contrast to cropping a rectangular region in the image that
[3]. This overcomes problems associated with often fuzzy encompasses the lips in a sequence of image frames in an

definition of lip boundary in the luminance channel, and utterance, and subsequently taking the central vertical
the algorithm is consequently markedly more robust profile as the ROI. In practice, the ROI consists of a thin

compared to most snake-based algorithms and other strip of pixels, where smoothing in the orthogonal
approaches based on grayscale information alone. Another direction is performed.

unique element is that the residual fitting error is used to
monitor tracking errors and outlier measurements, and can Robustness of ROI estimation for pixel-based features and

trigger the lip localization module for automatic re- the accuracy of tracking are known to be important for
initialization. We have implemented a real-time tracking improving accuracy of visual speech recognition [9][131.
system on a 195MHz SGI 02 workstation that runs at The approach we proposed could also be applied to the
30fps. Figure I shows a few tracking examples. whole ROI defined by the tracking contour as opposed to

only to the vertical profile. Furthermore, transform-based
features similar to that in [15] could also be derived and

3. Hybrid Visual Features. used as features instead. Comparison with these variants
will be a subject of future study. In our experiments, the

Hybrid features are comprised of both geometric- and center profile contained much of the information about the
pixel-based features. Using tracking results obtained from appearance of the teeth and tongue, as well as their spatial
the algorithm described above, geometric-based features, relationship, and good recognition accuracy was
including the width and height of the mouth area and their achievable even in visual-only speech recognition.
temporal derivatives, can be estimated automatically.
Pixel-based features are derived from the vertical intensity Figure 1 illustrates the application of the tracking
profile calculated based on a subset of the pixels, algorithm for the extraction of visual features (both
delimited by the boundary of the upper and lower lips geometric- and pixel-based).
explicitly estimated by the tracking algorithm. The number
of pixels that defines the profile varies over time as the 4. HMM for Audio-Visual Speech.
lips open and close. By proper sub-sampling and linear
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Here we describe the basic elements of the HMMs in our Table 1: Visual-only connected digit ASR's word

approach. error rate (WER %) for geometric (G), pixel-based
(P), and hybrid (G+P) features described in this

An N-state HMM is characterized by a state transition paper. The second and third rows are results with
delta and delta-delta features. The size of the base
feature vector is indicated in parentheses.

observation density functions, one for each state, which
can be written as a Gaussian mixture G (2) P(32) G(2+P(32

Static 36.89 22.66 20.29
bM(Or = G (°tj•mVJM I j J < N Static+A 26.88 11.59 9.88

M=Vm), 1 N Static+A+AA 27.80 9.49 6.85

where o, is the observation vector at time t, Ci,, is the
eleven digits were 0-9 and 'oh.' The digit strings were

mixture coefficient, G is a multi-variate Gaussian taken from TIDIGITS, where utterances of up to seven
distribution with mean L/Ij and covariance Vm for mth digits were used. From a small database of 1518 audio-

mixture in the statej. visual speech utterances, 759 were used for training and
759 for testing. Speech samples from one speaker were

The acoustic and visual features were combined in two used to isolate the effects of speaker variability in this

different ways in our HMM-based ASR experiments. In particular study. We used Hidden Markov Models to build

the first scheme, acoustic and visual feature vectors are word-model based recognizers. Gaussian mixtures were

concatenated to form individual feature vectors. In the used to model the observation densities. The optimal

second scheme, we model acoustic and visual features in number of mixtures (1-10) and number of hidden states (5-

separate feature streams. The mixture weights, mean 10) in the HMMs were determined empirically. A 3-state

vectors and covariance matrices in each observation silence model was also used. The acoustic features were

density function are modeled separately in individual 12 Mel frequency cepstral coefficients (MFCC) plus the

streams. The corresponding observation density is given 0t' order cepstral coefficient, as well as their first and

by second temporal derivatives, resulting in an acoustic

[ rM, p feature vector of size 39. They were computed every I Oms

b,(o,)O= V),,G(oI,].im, V J a,,.G(Ovt;JL,,m,Vim) using a 25ms frame analysis window. Per-utterance

M1 aImarnj r 1= I cepstral mean normalization was also applied.

where subscripts a and v are used to denote the audio and The geometric features were derived from the width and

visual channels, and the density of each channel is height of the mouth normalized with respect to the
corresponding dimensions when the speaker's mouth was

weighted by exponents fP, and 8,, respectively, where fla closed. The pixel-based features were also normalized

+ 0, = I. This is the multi-stream HMM formulation. The with respect to the mean value of the vertical profile when

implicit assumption is that the audio and video the speaker's mouth was closed. Interpolation of visual

observations are independent, which is really not exactly features was performed to generate samples at the audio

accurate. However, to be able to estimate reliably the

parameters of b, from limited amount of training data, it In the audio-visual experiments, the audio features and

is customary to assume a diagonal covariance, and hence visual features were concatenated to form a single feature
the assumption can be applied justifiably at least in the vector for the single stream HMM case. The 2-stream
single Gaussian case with equal stream weights. HMM was also considered where the stream exponents
Empirically, the stream weights can be used to give were optimized using a linear step search. Alternatively,
different emphasis to the observations, for example, based they could be discriminatively trained [17]. The Baum-
on the relative reliability of each channel. Welch algorithm was used for EM-style embedded HMM

training, and the Viterbi decoding algorithm for

5. Speech Recognition Experiments. recognition. The HTK Toolkit [19] was used to design
these experiments.

We performed a few evaluation experiments to compare
various visual feature choices and investigate the relative Table I shows first a summary of the recognition

merits of the various possible feature combinations. We experiments employing visual features alone. One general

focused on the connected digit recognition task. The trend we observed was that dynamic features (delta and
delta-delta) in general carry additional information for
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Table 2: Recognition WER (%) for the audio-only We demonstrated the efficacy of our hybrid visual features

baseline (A), visual-only baseline (V), single stream in the context of connected digit recognition. Although

audio-visual (AVI), 2-stream audio-visual (AV2) ASR at single stream audio-visual HMM using concatenated

different SNR levels (dB). The reference visual feature features outperformed the acoustic-only counterpart, the 2-

used here was G+AG+P. pa is the optimal stream weight stream HMM gave the lowest WER at all SNR levels. The
optimal stream weight for the audio channel decreased as

on the audio channel for AV2. Note that AVI was worse the SNR level was lowered.
than the visual-only ASR at -3dB, whereas AV2
remained better.

References
lclean 20 15 10 5 3 0 3 II] C. Bregler and Y. Konig, "'Eigenlips' for robust speech

A 0.13 0.66 5.53 23.58 67.19 75.63 80.11 85.11 recognition." in Proc. International Conference on

V 17.26 17.26 17.26 17.26 17.26 17.26 17.26 17.26 Acoustics Speech and Signal Processing, pp. 669-672, 1994.
AV1 0.13 0.53 1.32 2.50 7.38 10.14 15.55 22.79 121 M. T. Chan, Y. Zhang, and T. S. Huang, "Real-time lip

tracking and bimodal continuous speech recognition," in
AV2 0.13 0.26 0.53 2.50 6.59 9.75 12.12 14.49 Proc. IEEE Signal Processing Society 1998 Workshop on

Pa 0.95 0.85 0.8 0.65 0.5 0.45 0.35 0.35 Multimedia Signal Processing, pp. 65-70, 1998.
[31 M. T. Chan, "Automatic lip model extraction for

constrained contour-based tracking," in Proc. IEEE

recognition. Visual-only ASR word error rate as good as International Conference on Image Processing. Vol. 2, pp.

6.85% was achieved, which was remarkable since no 848-851, 1999.
141 M. T. Chan: "HMM-based audio-visual speech recognition

acoustic information was used and the pixel-based features integrating geometric- and appearance-based visual
were derived only from a small subset of pixels. features." In Proc. IEEE Workshop on Multimedia Signal

Processing, pp. 9-14, Cannes, France, Oct 3-5. 2001.
In the second experiment, we evaluated the effectiveness [5] T. Chen, Rao, R. R., "Audio-visual integration in
of the hybrid feature in the context of audio-visual speech multimodal communication," in Proceedings of the IEEE.
recognition in the presence of noise. To be consistent with Vol. 86, pp. 837 -852, 1998.
the visual features used in our previous work [4], the (6] S. Chu, T. S. Huang. "Audio-visual speech modeling using

hybrid features employed were the combination of the coupled hidden Markov models," In Proc. ICASSP, 2002.

base static pixel-based features, and the width and height 171 S. Gurbuz, Z. Tufekci, E. Patterson, J. Gowdy, "Multi-
stream product modal audio-visual integration strategy for

of the mouth together with their first temporal derivatives robust adaptive speech recognition." In Proc. ICASSP, 2002.
(i.e., G+AG+P). We added F-16 cockpit noise (from the [8] M. E. Hennecke. D. G. Stork, and K. V. Prasad, "Visionary
NoiseX database) to the audio channel systematically at speech: looking ahead to practical speechreading systems,"
various SNR levels (20dB to -3dB) only to the testing in D.G. Stork and M.E. Hennecke (eds.), Speechreading by
data. Table 2 summarizes the results. We observe that the Humans and Machines: Models Systems and Applications,
bimodal recognizers consistently outperformed the audio- Springer, 1995.
only counterpart at all SNR levels. Furthermore, the 2- 19] G. lyengar, G. Potamianos. C. Neti, T. Faruquie, and A.
"stream HMM outperformed the single-stream HMM, and Verma, "Robust detection of visual ROI for automatic

outperforman fedhe single-sredam thMM and speechreading," Proc. IEEE Worshop on Multimedia Signal
the performance difference increased as the SNR Processing, Cannes, 2001.
decreased. That was possible because the 2-stream HMM [10] M. Kass, A. Witkin, and D. Terzopoulus, "Snakes: Active
allowed stream weights to be applied selectively based on Contour Models," International Journal of Computer
reliability of the acoustic features. In fact, the optimal Vision, vol. 1, pp. 321-331, 1987.
stream weight on the audio channel decreased Ill] R. Kaucic and A. Blake, "Accurate, Real-Time, Unadorned
monotonically with the SNR level. We expect the overall Lip Tracking," in Proc. 6th International Conference on
performance will be higher if we use all delta and delta- Computer Vision, pp. 370-375, 1998.
delta visual features. 112] J. Luettin, N.A. Thacker, and S.W. Beet, "Visual speech

recognition using active shape models and hidden Markov
models." in Proc. IEEE International Conference on

Figure 2 shows a screenshot of the tracking and audio- mdl, nPo.IE nentoa ofrneo
Acoustics, Speech, and Signal Processing, v 2, pp. 817-820,

visual ASR system prototype that we have developed for 1996.
experimentation. [131 1. Matthews, G. Potamianos, C. Neti, J. Luettin, "A

comparison of model and transform-based visual features

6. Conclusion. for audio-visual LVCSR." In Proc. International
Conference on Multimedia Expo, 2001.

[14] S. Nakamura, K. Kumatani, S. Tamura, "Robust bi-modal
We overviewed a real-time visual lip tracking system that speech recognition based on state synchronous modeling
we used to define the ROI for visual feature calculation. and stream weight optimization," In Proc. ICASSP, 2002.

30



~444
00> FOR• j %l. i_ I
02> FiVLE (VidwP, 'TH f :L) 1-1 ý'EEiH -

83 .N ,E .... E T• EIR t i ZtF0 ' .+ <4

04> OJNE zER0 ONEZI~ THf,FE URlj~ FIVýE .

8i5 NINE .ER.T 4 OH1 .. %

RunMode:

i~spMode: Dem

AvMode: .i

ýPonfig: I wa

;4 ocab: Dgl

" •""• .. . •, •,:• etvork: f

Figure 2: A screenshot of an experimental tracking and audio-visual ASR system at Rockwell Scientific. The system

allows online switching among three recognition modes: audio-only, visual-only, or audio-visual. It can also be used
to collect synchronized audio-visual sample data at 30fps directly to a disk array. A lightweight head-worn audio-

visual capture apparatus can also be employed to allow users the freedom of head movement.

[15] C. Neti, G. Potamianos, J. Luettin, 1. Matthews, H. Glotin, [19] S. Young. J. Odell, D. Ollason, V. Valtchev, and P.
and D. Vergyri. "Large-vocabulary audio-visual speech Woodland. The HTK-Hidden Markov Model Toolkit V2.1,
recognition: A summary of the Johns Hopkins Summer Entropic Research, Cambridge, 1997.
2000 Workshop," In Proc. IEEE Workshop on Multimedia [20] A. L. Yuille, P. Hallinan, and D. S. Cohen, "Feature
Signal Processing, Cannes, 2001. Extraction from Faces Using Deformable Templates,"

[161 E. D. Petajan, B. Bischoff. and D. Bodoff. "An improved International Journal of Computer Vision, vol. 1, pp. 99-
automatic lipreading system to enhance speech 112, 1992.
recognition," in ACM SIGCHI-88, pp. 19-25. 1988. [21] Y. Zhang, S. Levinson, and T. Huang, "Speaker

[17] G. Potamianos, C. Neti. "Stream confidence estimation for independent audio-visual speech recognition," in Proc.
audio-visual speech recognition," in Proc. ICSLP, vol 111, International Conference on Multimedia and Expo, Vol 2,
pp. 746-749, 2000. pp. 1073-6, 2000.

[18] R. Rabiner and B.-H. Juang, Fundamentals of Speech
Recognition, Prentice-Hall, New Jersey, 1993.

31


